IBM предприняла первые шаги к коммерческому производству углеродных нанотрубок

Понедельник, 12 ноября 2012 г.

Следите за нами в ВКонтакте, Facebook'e и Twitter'e

Ученые корпорации IBM продемонстрировали новый подход к углеродным нанотехнологиям, который открывает возможность для коммерческого производства гораздо более компактных, быстрых и мощных компьютерных чипов.

Впервые свыше десяти тысяч рабочих транзисторов, созданных на основе наноразмерных углеродных трубок, были размещены и протестированы в одном чипе с использованием стандартных полупроводниковых технологических процессов. Эти углеродные устройства готовы заменить и превзойти свои кремниевые аналоги, давая возможность осуществить дальнейшую миниатюризацию компьютерных компонентов.

Кремниевая микропроцессорная техника, благодаря стремительному прогрессу и непрерывным инновациям на протяжении более чем четырех десятилетий, постоянно уменьшалась в размерах и повышала свою производительность, стимулируя, в свою очередь, революционное развитие информационных технологий. Кремниевые транзисторы с каждым годом становились все меньше, вплотную приближаясь к физическому переделу микроминиатюризации. Сверхмалые размеры кремниевых элементов, в настоящее время достигшие наномасштаба, начинают препятствовать повышению производительности вследствие структуры кремния и законов физики. В течение нескольких ближайших этапов классического уменьшения технологических норм потенциал дальнейшего снижения энергопотребления, уменьшения себестоимости и повышения быстродействия процессоров будет полностью исчерпан.

Углеродные нанотрубки представляют новый класс полупроводниковых материалов, электрические свойства которых являются более перспективными, чем у кремния, в частности, для создания наноразмерных транзисторных элементов, состоящих в сечении всего из несколько атомов. Электроны в углеродных транзисторах могут перемещаться с большей легкостью, чем в кремниевых устройствах, что позволяет быстрее передавать данные. Нанотрубки также идеально подходят по форме для транзисторов на атомарном уровне, что также является преимуществом по сравнению с кремнием. Все эти свойства служат одной из причин для замены традиционного кремниевого транзистора углеродным и, в сочетании с новыми архитектурными решениями чипа, предполагают возможность будущих инноваций в области микроэлектроники на наноразмерном уровне.

Подход, разработанный в исследовательской лаборатории IBM, открывает путь для производства чипов с большим числом транзисторов из углеродных нанотрубок, размещаемых точно в заданных позициях подложки. Способность обеспечивать диэлектрическую изоляцию полупроводниковых нанотрубок и размещать углеродные микроустройства на пластине с высокой плотностью "компоновки" имеет решающее значение для оценки их технологической пригодности - со временем для интеграции в одну коммерческую микросхему будет требоваться более миллиарда транзисторов. До сих пор ученым удавалось разместить не более нескольких сотен устройств из углеродных нанотрубок одновременно, что недостаточно для решения ключевых проблем коммерческого применения.

"Углеродные нанотрубки, впервые полученные химиками, в значительной степени воспринимались как лабораторный курьез, но не с точки зрения прикладного применения в микроэлектронике. Мы пытаемся делать первые шаги в разработке промышленной технологии, создавая транзисторы из углеродных нанотрубок в рамках стандартного техпроцесса и инфраструктуры производства кристаллических пластин-подложек, - подчеркнул Супратик Гуха, директор направления физических наук в IBM Research. - Работе с транзисторами из углеродных нанотрубок имеет практический смысл, потому что при сверхмалых размерах они превосходят по функциональным характеристикам транзисторы, сделанные из любого другого материала. Тем не менее, существуют определенные проблемы, которые необходимо решать, в частности, такие как сверхвысокая химическая чистота вещества углеродных нанотрубок и чрезвычайно точное, тщательно рассчитанное размещение на подложке на наноуровне. Мы достигли значительного прогресса в решении обеих этих проблем".

В 2012 году исследователи IBM продемонстрировали, что транзисторы из углеродных нанотрубок могут работать как великолепные микропереключатели (коммутаторы) на молекулярном уровне, в размерном масштабе менее десяти нанометров - это в 10 000 раз тоньше человеческого волоса и менее половины от лучшей на сегодняшний день технологической нормы кремниевого полупроводникового производства. Проведенное всестороннее моделирование электронных схем позволяет предположить возможность улучшения производительности по сравнению с кремниевыми электронными схемами приблизительно в 5-10 раз.

Существует ряд практических проблем применения углеродных нанотрубок в коммерческом производственном процессе, в частности, связанных, как уже отмечалось выше, с химической чистотой вещества и размещением углеродных транзисторных элементов на подложке. Углеродные нанотрубки по своей природе сочетают, в большей или меньшей степени, металлические и полупроводниковые признаки, и, кроме того, их необходимо точно позиционировать на кристаллической пластине для формирования электронных схем. Для функционирования устройства пригодны только трубки с полупроводниковой "природой", что требует практически полного удаления трубок с признаками классического металла для предотвращения ошибок в цепях. Кроме того, для достижения высокого уровня интеграции чрезвычайно важна способность контролировать точное позиционирование элементов электронных схем из углеродных нанотрубок на подложке.

Для решения этих проблем ученые IBM разработали новый метод, основанный на ионообменной химии, который позволяет осуществлять точное и контролируемое размещение углеродных нанотрубок на подложке при высокой плотности компоновки - на два порядка большей, чем в предыдущих экспериментах. Теперь отдельные нанотрубки можно с контролируемой точностью позиционировать на кристалле чипа с показателем плотности около миллиарда на квадратный сантиметр. Процесс начинается со смешивания углеродных нанотрубок с поверхностно-активным веществом, которое делает их растворимыми в воде. Подложка состоит из двух оксидов - химически модифицированного оксида гафния (HfO2), формирующего "канавки" на пластине, и оксида кремния (Si02), составляющего остальную часть пластины. Подложка погружается в раствор углеродных нанотрубок, и нанотрубки химически связываются с зонами оксида HfO2, тогда как остальная часть поверхности пластины остается чистой.

Опираясь на объединенный научный и инженерно-технический опыт, исследователи IBM сегодня в состоянии сформировать более 10 тысяч транзисторов из углеродных нанотрубок на одном чипе. Более того, возможно быстрое экспресс-тестирование тысяч полупроводниковых углеродных наноустройств с использованием широкого спектра существующих инструментов для определения характеристик благодаря совместимости стандартных коммерческих процессов.

Поскольку эта новая методика размещения элементов на подложке может быть с легкостью реализована при использовании обычных химических веществ и существующего полупроводникового техпроцесса, это дает отрасли возможность работать с углеродными нанотрубками в гораздо большем масштабе и создавать инновации для углеродной микроэлектроники.

Следите за нами в ВКонтакте, Facebook'e и Twitter'e


Просмотров: 441
Рубрика: Hi-Tech


Архив новостей / Экспорт новостей

Ещё новости по теме:

RosInvest.Com не несет ответственности за опубликованные материалы и комментарии пользователей. Возрастной цензор 16+.

Ответственность за высказанные, размещённую информацию и оценки, в рамках проекта RosInvest.Com, лежит полностью на лицах опубликовавших эти материалы. Использование материалов, допускается со ссылкой на сайт RosInvest.Com.

Архивы новостей за: 2018, 2017, 2016, 2015, 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003

Февраль 2024: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29