Ученые создали универсальный инструментарий для работы с физикой за пределами Стандартной модели
15.11.2021, 11:08 Поиски физических явлений вне Стандартной модели часто происходят на крупных ускорителях, таких как Большой адронный коллайдер ЦЕРНа или огромных подземных детекторах нейтрино, темной материи и других экзотических частиц. Исследователи из Нидерландов открыли альтернативный фронт в этом поиске, разработав новый лабораторный метод улавливания тяжелых нейтральных молекул.
Новый метод подарил физикам целый арсенал инструментов для работы с «новой физикой»
Тяжелые нейтральные молекулы считаются идеальными кандидатами для обнаружения асимметрий за пределами Стандартной модели в электрическом дипольном моменте электрона (eEDM), но предыдущие методы не были способны ограничить их.
Стандартные методы, используемые при поиске eEDM, включают выполнение высокоточной спектроскопии атомов или молекул, которые сначала замедляются, а затем захватываются лазерами или электрическими полями на время измерения. Проблема в том, что открытие новой физики может потребовать захвата молекул, которые слишком тяжелы, чтобы их можно было удерживать с помощью лазеров. Электрические поля, в свою очередь, могут улавливать только тяжелые ионы, а не нейтральные атомы или молекулы. Высокотехнологичная ловушка
Исследователи начали с создания молекул фторида стронция (SrF) посредством химической реакции, которая происходит внутри криогенного газа при температуре около 20 К. Эти молекулы имеют начальную скорость 190 м/с, а при комнатной температуре движутся со скоростью около 500 м/с.
После синтеза молекулы попадают в устройство длиной 4,5 метра под названием «замедлитель Старка», в котором переменные электрические поля замедляют, а затем и вовсе останавливают их движение. Молекулы SrF остаются захваченными в течение 50 мс, во время которых исследователи анализируют их с помощью отдельной системы обнаружения флуоресценции, индуцированной лазером. Измерения, полученные в результате, выявляют фундаментальные свойства электронов, включая eEDM, которые затем можно проверить на любую асимметрию. Чем тяжелее — тем лучше
Молекулы SrF примерно в три раза тяжелее, чем другие молекулы, ранее захваченные с помощью аналогичных методов, отмечает Стивен Хекстра, физик из Гронингена и ведущий автор исследования. «Наш следующий шаг — уловить еще более тяжелые молекулы, такие как фторид бария (BaF), который в полтора раза тяжелее SrF. Этот тип молекул даже лучше подходит для измерений на электронном диполе. По сути, чем тяжелее молекула, тем точнее будут наши измерения».
У захвата тяжелых молекул есть и другие приложения, помимо измерений eEDM. Одним из примеров может быть изучение столкновений между молекулами при низких энергиях в условиях, подобных тем, которые существуют в космосе. Измерения медленно движущихся молекул также могут дать более глубокое понимание квантовой природы их взаимодействий. При достаточно высоких плотностях так называемое диполь-дипольное взаимодействие молекул, которое зависит от их ориентации относительно друг друга, имеет большое значение в том, как они взаимодействуют. Эти типы измерений открывают возможности, недоступные для неподвижных атомов, которые не взаимодействуют подобным образом.
Новый метод подарил физикам целый арсенал инструментов для работы с «новой физикой»
Тяжелые нейтральные молекулы считаются идеальными кандидатами для обнаружения асимметрий за пределами Стандартной модели в электрическом дипольном моменте электрона (eEDM), но предыдущие методы не были способны ограничить их.
Стандартные методы, используемые при поиске eEDM, включают выполнение высокоточной спектроскопии атомов или молекул, которые сначала замедляются, а затем захватываются лазерами или электрическими полями на время измерения. Проблема в том, что открытие новой физики может потребовать захвата молекул, которые слишком тяжелы, чтобы их можно было удерживать с помощью лазеров. Электрические поля, в свою очередь, могут улавливать только тяжелые ионы, а не нейтральные атомы или молекулы. Высокотехнологичная ловушка
Исследователи начали с создания молекул фторида стронция (SrF) посредством химической реакции, которая происходит внутри криогенного газа при температуре около 20 К. Эти молекулы имеют начальную скорость 190 м/с, а при комнатной температуре движутся со скоростью около 500 м/с.
После синтеза молекулы попадают в устройство длиной 4,5 метра под названием «замедлитель Старка», в котором переменные электрические поля замедляют, а затем и вовсе останавливают их движение. Молекулы SrF остаются захваченными в течение 50 мс, во время которых исследователи анализируют их с помощью отдельной системы обнаружения флуоресценции, индуцированной лазером. Измерения, полученные в результате, выявляют фундаментальные свойства электронов, включая eEDM, которые затем можно проверить на любую асимметрию. Чем тяжелее — тем лучше
Молекулы SrF примерно в три раза тяжелее, чем другие молекулы, ранее захваченные с помощью аналогичных методов, отмечает Стивен Хекстра, физик из Гронингена и ведущий автор исследования. «Наш следующий шаг — уловить еще более тяжелые молекулы, такие как фторид бария (BaF), который в полтора раза тяжелее SrF. Этот тип молекул даже лучше подходит для измерений на электронном диполе. По сути, чем тяжелее молекула, тем точнее будут наши измерения».
У захвата тяжелых молекул есть и другие приложения, помимо измерений eEDM. Одним из примеров может быть изучение столкновений между молекулами при низких энергиях в условиях, подобных тем, которые существуют в космосе. Измерения медленно движущихся молекул также могут дать более глубокое понимание квантовой природы их взаимодействий. При достаточно высоких плотностях так называемое диполь-дипольное взаимодействие молекул, которое зависит от их ориентации относительно друг друга, имеет большое значение в том, как они взаимодействуют. Эти типы измерений открывают возможности, недоступные для неподвижных атомов, которые не взаимодействуют подобным образом.
Ещё новости по теме:
18:20