Сбер предлагает программным способом определять вероятность заболевания COVID-19 всего за минуту
Сбер сообщает о разработке её лабораторией искусственного интеллекта алгоритма, который в течение 60 секунд может определить вероятность заболевания коронавирусной инфекцией COVID-19. Наличие вируса определяется на основе результатов короткого опроса по симптоматике и трёх звуковых моделей — голоса, дыхания и кашля.
Звуковые файлы превращаются в спектрограмму, показывающую энергию звука на разных частотах, и далее анализируются с помощью глубокой свёрточной нейронной сети. Отмечается, что для её тренировки использовались только открытые данные — это более тысячи образцов звуков дыхания и кашля, собранных с диагностированных пациентов в российских клиниках.
Заявляется, что средний ROC AUC (площадь под «кривой ошибок») созданной Сбером модели на данный момент равен 0,8. Ожидается дальнейшее улучшение качества модели при увеличении объёма данных, в том числе собранных с помощью мобильного приложения.
Звуковые файлы превращаются в спектрограмму, показывающую энергию звука на разных частотах, и далее анализируются с помощью глубокой свёрточной нейронной сети. Отмечается, что для её тренировки использовались только открытые данные — это более тысячи образцов звуков дыхания и кашля, собранных с диагностированных пациентов в российских клиниках.
Заявляется, что средний ROC AUC (площадь под «кривой ошибок») созданной Сбером модели на данный момент равен 0,8. Ожидается дальнейшее улучшение качества модели при увеличении объёма данных, в том числе собранных с помощью мобильного приложения.
Ещё новости по теме:
18:20