За два часа российский квантовый симулятор решил задачу, на которую ушла неделя работы мощного вычислительного кластера
Ученые из МФТИ, МИСиС, РКЦ, МГТУ и ВНИИА провели эксперимент, в котором сверхпроводниковые кубиты симулировали передачу фотонов в модели Бозе — Хаббарда. Численное решение модели на классическом компьютере для проверки экспериментальных данных, полученных на симуляторе за два часа, заняло около недели на 138-ядерном вычислительном кластере ВНИИА им. Духова.
Российские ученые провели эксперимент, в рамках которого квантовый компьютер создал сложную симуляцию передачи фотонов за фантастически короткое время
Сегодня в мировом научном сообществе выделилось два направления разработки квантовых вычислителей: универсальные квантовые компьютеры, которые смогут выполнять специализированные алгоритмы во много раз быстрее, чем классические аналоги, и квантовые симуляторы, которые создаются специально для решения конкретных задач подобно интегральным схемам специального назначения (ASIC). Реализация универсальных вычислителей — гораздо более сложная инженерная задача, так как требуется обязательно делать алгоритмы коррекции ошибок. Для симуляторов же главное — соответствие физической системе, для которой они создаются.
В разработке сейчас много различных типов кубитов. Доминирующую роль в квантовых вычислителях занимают сверхпроводящие кубиты-трансмоны. Многими теоретическими и несколькими экспериментальными работами было показано, что массивы кубитов-трансмонов хорошо подходят и для создания квантовых симуляторов с целью решения проблем физики конденсированного состояния, расчетов макроскопических и микроскопических свойств веществ.
В новом исследовании, проведенном российскими учеными, впервые показано, что линейные массивы сверхпроводящих кубитов-трансмонов могут симулировать передачу фотонов для изучения перехода «сверхпроводник — изолятор» в модели Бозе — Хаббарда. Причем для этого потребовалась сравнительно простая архитектура: подключение кубитов к микроволновым волноводам и проведение прямой спектроскопии пропускания. Эксперимент показал, как именно сверхпроводниковые симуляторы могут помочь решать задачи материаловедения и исследовать не встречающиеся в естественной природе фазы вещества (например, сверхтекучие). Работа опубликована в журнале Physical Review Letters. Physical Review Letters Оптическая фотография устройства (вверху, в ложном цвете) и схема эквивалентной физической модели с бозонами, пойманными в периодический потенциал (внизу)
Российские ученые провели эксперимент, в рамках которого квантовый компьютер создал сложную симуляцию передачи фотонов за фантастически короткое время
Сегодня в мировом научном сообществе выделилось два направления разработки квантовых вычислителей: универсальные квантовые компьютеры, которые смогут выполнять специализированные алгоритмы во много раз быстрее, чем классические аналоги, и квантовые симуляторы, которые создаются специально для решения конкретных задач подобно интегральным схемам специального назначения (ASIC). Реализация универсальных вычислителей — гораздо более сложная инженерная задача, так как требуется обязательно делать алгоритмы коррекции ошибок. Для симуляторов же главное — соответствие физической системе, для которой они создаются.
В разработке сейчас много различных типов кубитов. Доминирующую роль в квантовых вычислителях занимают сверхпроводящие кубиты-трансмоны. Многими теоретическими и несколькими экспериментальными работами было показано, что массивы кубитов-трансмонов хорошо подходят и для создания квантовых симуляторов с целью решения проблем физики конденсированного состояния, расчетов макроскопических и микроскопических свойств веществ.
В новом исследовании, проведенном российскими учеными, впервые показано, что линейные массивы сверхпроводящих кубитов-трансмонов могут симулировать передачу фотонов для изучения перехода «сверхпроводник — изолятор» в модели Бозе — Хаббарда. Причем для этого потребовалась сравнительно простая архитектура: подключение кубитов к микроволновым волноводам и проведение прямой спектроскопии пропускания. Эксперимент показал, как именно сверхпроводниковые симуляторы могут помочь решать задачи материаловедения и исследовать не встречающиеся в естественной природе фазы вещества (например, сверхтекучие). Работа опубликована в журнале Physical Review Letters. Physical Review Letters Оптическая фотография устройства (вверху, в ложном цвете) и схема эквивалентной физической модели с бозонами, пойманными в периодический потенциал (внизу)
Ещё новости по теме:
18:20