Учёные УрФУ разработали полимер для топливных ячеек, устойчивый к воздействию метанола

Среда, 14 августа 2019 г.

Следите за нами в ВКонтакте, Телеграм'e и Twitter'e

Учёные Уральского федерального университета совместно с иностранными коллегами синтезировали новый трёхмерный пористый полимер, который способен восстанавливать кислород, в результате чего выделяется электрохимическая энергия. В отличие от современных топливных элементов, активность которых блокируется из-за образующегося в ходе их работы метанола, новый материал обладает устойчивостью к его воздействию. Такие свойства обеспечивают огромный потенциал использования подобных полимеров для получения энергии при работе двигателей и впоследствии помогут смягчить энергетический кризис в обществе. Результаты исследования опубликованы в журнале Dyes and Pigments.

Топливные элементы - это ячейки, в которых за счёт химической реакции образуется энергия. Их устройство и функционирование похожи на принцип работы батарейки. Последние имеют ограниченный запас химических реагентов и в них не подаются вещества извне.

Топливные элементы являются хорошей альтернативой традиционным методам выработки энергии. Они практически не загрязняют атмосферу и не вредят окружающей среде. Сейчас идут активные исследования в области применения полимеров в качестве мембран в топливных ячейках, катализирующих химическую реакцию. Для них метанол является большой проблемой. Со временем он образуется из полимерной мембраны и блокирует активные центры, в результате чего сильно снижается скорость реакции. По сравнению с распространёнными и достаточно эффективными органическими и неорганическими катализаторами синтезированный сотрудниками УрФУ полимер оказался устойчивым к действию метанола и при его добавлении не менял своей активности.

Учёные выяснили, что синтезированный полимер проявляет окислительно-восстановительную активность за счёт атомов азота, входящих в его состав. Кислород, контактируя с этим веществом, забирает электроны (то есть восстанавливается), превращается в воду, и происходит выделение энергии. Исследователями был предложен механизм данной реакции, состоящий из четырёх последовательных стадий.

«Наличие азотных центров обеспечивает альтернативный подход к восстановлению кислорода благодаря переключению азота из степени окисления 3+ в 5+ и назад. Но это совершенно другой механизм, и по энергетике он чаще всего проигрывает традиционно используемым переходным металлам», - рассказывает Данил Бухвалов, кандидат физико-математических наук, старший научный сотрудник кафедры теоретической физики и прикладной математики УрФУ.

В настоящее время непонятно, насколько будет успешно применение каталитических полимеров в энергетике. Выгода их использования в том, что в состав этих материалов входят распространённые элементы, такие как азот, водород, углерод и кислород. Каталитические полимеры пористые и имеют большую площадь активной поверхности, но пока недостаточно эффективны.

«Открывается огромное поле для работы - вполне вероятно, что из множества видов полимерных материалов с азотными центрами удастся выбрать такой, который по эффективности будет сравним с переходными элементами и окажется химически устойчив. Трудность в том, что при повышении каталитической активности вещества уменьшается его стабильность. Другая проблема полимеров - их изготовление. Это многоступенчатый процесс, и не факт, что он будет экономически оправдан», - подводит итог Данил Бухвалов.

Работа выполнена совместно с сотрудниками Университета Ханьянг (Южная Корея), Нанкинского лесотехнического университета (Китай) и Технологического института Веллуру (Индия).

Следите за нами в ВКонтакте, Телеграм'e и Twitter'e


Просмотров: 1099
Рубрика: Химпром


Архив новостей / Экспорт новостей

Ещё новости по теме:

RosInvest.Com не несет ответственности за опубликованные материалы и комментарии пользователей. Возрастной цензор 16+.

Ответственность за высказанные, размещённую информацию и оценки, в рамках проекта RosInvest.Com, лежит полностью на лицах опубликовавших эти материалы. Использование материалов, допускается со ссылкой на сайт RosInvest.Com.

Архивы новостей за: 2018, 2017, 2016, 2015, 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003