Новая пленочная защита для смартфонов
Защитные пленки используются, как для упаковки продуктов питания и лекарств, так и для защиты бытовой электроники и солнечных батарей. Они предотвращают быструю порчу продуктов, а также защищают электронику от воздействия воздуха и воды. Исследователи из Технологического института Джорджии (США) разработали новый способ получения этих пленок с использованием технологии атомно-слоевого осаждения.
Речь идет не о той хрупкой пленке, которая может запечатать пакет печенья, а о барьерной пленке высокого класса, защищающей, например, OLED-дисплей телефона от воздействия кислорода или паров водорода. Производство такой пленки требует материалов с высокими эксплуатационными характеристиками - оксидов металлов. Существующие методы изготовления этой высокопроизводительной защиты несовершенны. Из-за особенностей производства, пленки часто имеют небольшие дефекты, в результате чего через крошечные отверстия проникают вода или кислород.
Самуил Грэм (Samuel Graham) и его коллеги из Технологического института Джорджии изучали, как технологию атомно-слоевого осаждения можно использовать для повышения качества защитных пленок. В итоге ученые создали новые пленки, которые могут защитить электронику даже в экстремальных условиях – например, при погружении в соленую воду на несколько месяцев. Создавая такие защитные пленки, можно существенно продлить срок службы и надежность электронных устройств. Такое покрытие предлагается использовать для имплантируемых биомедицинских устройств, светоизлучающих диодов, дисплеев, солнечных батарей и органических электрохромных окон , которые при подаче напряжения меняют степень пропускания света.
Высокопроизводительные барьерные пленки обычно изготавливают с использованием метода напыления или метода плазменно- химического осаждения. В этих способах материал либо «распыляется» на подложку или выращивается из плазмы, создавая тонкий слой, который становится пленкой. И хотя эти методы широко используются в промышленности, они часто приводят к дефектам, потому требуется нескольких покрытий для создания качественного защитного барьера.
При технологии атомно-слоевого осаждения исследователи могут точно контролировать процесс, вплоть до молекулярного уровня. Это позволяет создавать тончайшие пленки с минимальными дефектами. В процессе изготовления исследователи окружают субстрат газом, содержащим атомы металла, в частности, алюминия. Молекулы газа оседают на подложку, образуя единый слой атомов. Затем избыток газа удаляется из камеры, и в нее вводится другой газ, который создает оксида металла, непроницаемы для воздуха и воды. Этот процесс повторяется для достижения желаемой толщины пленки, которая может составлять всего 10 нм. Для сравнения, пленки, произведенные традиционными методами, в десятки и сотни раз толще.
Группа исследователей уже разработала и продала технологию атомно-слоевого осаждения, однако для начала промышленного производства пленки технологию еще предстоит усовершенствовать.
Речь идет не о той хрупкой пленке, которая может запечатать пакет печенья, а о барьерной пленке высокого класса, защищающей, например, OLED-дисплей телефона от воздействия кислорода или паров водорода. Производство такой пленки требует материалов с высокими эксплуатационными характеристиками - оксидов металлов. Существующие методы изготовления этой высокопроизводительной защиты несовершенны. Из-за особенностей производства, пленки часто имеют небольшие дефекты, в результате чего через крошечные отверстия проникают вода или кислород.
Самуил Грэм (Samuel Graham) и его коллеги из Технологического института Джорджии изучали, как технологию атомно-слоевого осаждения можно использовать для повышения качества защитных пленок. В итоге ученые создали новые пленки, которые могут защитить электронику даже в экстремальных условиях – например, при погружении в соленую воду на несколько месяцев. Создавая такие защитные пленки, можно существенно продлить срок службы и надежность электронных устройств. Такое покрытие предлагается использовать для имплантируемых биомедицинских устройств, светоизлучающих диодов, дисплеев, солнечных батарей и органических электрохромных окон , которые при подаче напряжения меняют степень пропускания света.
Высокопроизводительные барьерные пленки обычно изготавливают с использованием метода напыления или метода плазменно- химического осаждения. В этих способах материал либо «распыляется» на подложку или выращивается из плазмы, создавая тонкий слой, который становится пленкой. И хотя эти методы широко используются в промышленности, они часто приводят к дефектам, потому требуется нескольких покрытий для создания качественного защитного барьера.
При технологии атомно-слоевого осаждения исследователи могут точно контролировать процесс, вплоть до молекулярного уровня. Это позволяет создавать тончайшие пленки с минимальными дефектами. В процессе изготовления исследователи окружают субстрат газом, содержащим атомы металла, в частности, алюминия. Молекулы газа оседают на подложку, образуя единый слой атомов. Затем избыток газа удаляется из камеры, и в нее вводится другой газ, который создает оксида металла, непроницаемы для воздуха и воды. Этот процесс повторяется для достижения желаемой толщины пленки, которая может составлять всего 10 нм. Для сравнения, пленки, произведенные традиционными методами, в десятки и сотни раз толще.
Группа исследователей уже разработала и продала технологию атомно-слоевого осаждения, однако для начала промышленного производства пленки технологию еще предстоит усовершенствовать.
Ещё новости по теме:
18:20